RESEARCH ARTICLES Ligand Solvation in Molecular Docking
نویسندگان
چکیده
Solvation plays an important role in ligand-protein association and has a strong impact on comparisons of binding energies for dissimilar molecules. When databases of such molecules are screened for complementarity to receptors of known structure, as often occurs in structure-based inhibitor discovery, failure to consider ligand solvation often leads to putative ligands that are too highly charged or too large. To correct for the different charge states and sizes of the ligands, we calculated electrostatic and non-polar solvation free energies for molecules in a widely used molecular database, the Available Chemicals Directory (ACD). A modified Born equation treatment was used to calculate the electrostatic component of ligand solvation. The non-polar component of ligand solvation was calculated based on the surface area of the ligand and parameters derived from the hydration energies of apolar ligands. These solvation energies were subtracted from the ligand-receptor interaction energies. We tested the usefulness of these corrections by screening the ACD for molecules that complemented three proteins of known structure, using a molecular docking program. Correcting for ligand solvation improved the rankings of known ligands and discriminated against molecules with inappropriate charge states and sizes. Proteins 1999;34:4–16. r 1999 Wiley-Liss, Inc.
منابع مشابه
Towards a critical evaluation of an empirical and volume-based solvation function for ligand docking
Molecular docking is an important tool for the discovery of new biologically active molecules given that the receptor structure is known. An excellent environment for the development of new methods and improvement of the current methods is being provided by the rapid growth in the number of proteins with known structure. The evaluation of the solvation energies outstands among the challenges fo...
متن کاملEvaluation of Docking Target Functions by the Comprehensive Investigation of Protein-Ligand Energy Minima
The adequate choice of the docking target function impacts the accuracy of the ligand positioning as well as the accuracy of the protein-ligand binding energy calculation. To evaluate a docking target function we compared positions of its minima with the experimentally known pose of the ligand in the protein active site. We evaluated five docking target functions based on either the MMFF94 forc...
متن کاملMolecular docking and in silico ADME prediction of Ticagrelor as an antagonist of the P2Y12 receptor
The purpose of the present research work is prediction of electronic and physico-chemical properties of the novel medicinal compound Ticagrelor (AZD6140) using density functional theory (DFT) method. Firstly, its molecular structure was optimized at B3LYP/6-311++G(d,p) basis set of theory at room temperature. The global reactivity indices used to study the reactivity and stability of the title ...
متن کاملInteraction of Human Serum Albumin with Ethyl 2-[2-(dimethylamino)-4-(4-nitrophenyl)-1,3-thiazole-5-yl]-2-oxoacetate as a Synthesized Ligand
The interaction of human serum albumin with Ethyl 2-[2-(dimethylamino)-4-(4-nitrophenyl)- 1,3-thiazole-5-yl]-2-oxoacetate was investigated by using isothermal titration UV-visible spectrophotometry in tris-buffer, pH 7.4. According to these results, it was found that there are a set of 4 binding sites for this ligand on HSA with positive cooperativity in the binding process. This thiazole deriv...
متن کاملRescoring of docking poses using force field-based methods
Existing protein-ligand docking methods computationally screen thousands to millions of organic molecules against protein structures, trying to find those with complementary shapes and highest binding free energies. To allow large molecular databases to be screened rapidly, simple and approximative scoring functions are used as a fast filter, resulting in low hit rates. Therefore, docking hit l...
متن کامل